Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Biomolecules ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540700

RESUMO

Skin aging is a multifaceted biological phenomenon influenced by a combination of intrinsic or extrinsic factors. There is an increasing interest in anti-aging materials including components that improve skin wrinkles. Despite the availability of several such wrinkle-improving materials, the demand for ingredients with outstanding efficacy is increasing. Therefore, this study aimed to explore the mechanisms of wrinkle-related genes reported in previous genome-wide association studies (GWASs), identify materials that regulate these genes, and develop an effective anti-wrinkle formula containing the active ingredients that regulate the expression of these genes. We selected two candidate genes, EDAR and BNC2, that are reportedly related to periorbital wrinkles. We investigated their functions in the skin through in vitro experiments using human skin cell lines (keratinocytes and fibroblasts). Moreover, we identified ingredients that regulate the expression of these two genes and confirmed their efficacy through in vitro experiments using the skin cell lines. Finally, we developed a formula containing these ingredients and confirmed that it enhanced dermal collagen in the 3D skin and improved fine wrinkles under the eyes more effectively than retinol in humans, when applied for 8 weeks. Our results are significant and relevant, as we have discovered a special formula for wrinkle improvement with reliable efficacy that surpasses the efficacy of retinol and does not cause side-effects such as skin irritation.


Assuntos
Envelhecimento da Pele , Vitamina A , Humanos , Vitamina A/farmacologia , Envelhecimento da Pele/genética , Estudo de Associação Genômica Ampla , Pele , Expressão Gênica , Receptor Edar , Proteínas de Ligação a DNA
2.
Skin Res Technol ; 30(3): e13636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424726

RESUMO

BACKGROUND: A growing number of experimental studies have shown an association between the gut microbiota (GM) and facial skin aging. However, the causal relationship between GM and facial skin aging remains unclear to date. METHODS: We conducted a two-sample Mendelian randomization (MR) analysis to investigate the potential causal relationship between GM and facial skin aging. MR analysis was mainly performed using the inverse-variance weighting (IVW) method, complemented by the weighted median (MW) method, MR-Egger regression, and weighted mode, and sensitivity analysis was used to test the reliability of MR analysis results. RESULTS: Eleven GM taxa associated with facial skin aging were identified by IVW method analysis, Family Victivallaceae (p = 0.010), Genus Eubacterium coprostanoligenes group (p = 0.038), and Genus Parasutterella (p = 0.011) were negatively associated with facial skin aging, while Phylum Verrucomicrobia (p = 0.034), Family Lactobacillaceae (p = 0.017) and its subgroups Genus Lactobacillus (p = 0.038), Genus Parabacteroides (p = 0.040), Genus Eggerthella (p = 0.049), Genus Family XIII UCG001 (p = 0.036), Genus Phascolarctobacterium (p = 0.027), and Genus Ruminococcaceae UCG005 (p = 0.012) were positively associated with facial skin aging. At Class and Order levels, we did not find a causal relationship between GM and facial skin aging. Results of sensitivity analyses did not show evidence of pleiotropy and heterogeneity. CONCLUSION: Our findings confirm the causal relationship between GM and facial skin aging, providing a new perspective on delaying facial aging.


Assuntos
Microbioma Gastrointestinal , Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Envelhecimento
3.
J Cosmet Dermatol ; 23(5): 1800-1807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38178620

RESUMO

BACKGROUND: Observational studies have linked coffee, alcohol, tea, and sugar-sweetened beverage (SSB) consumption to facial skin aging. However, confounding factors may influence these studies. The present two-sample Mendelian randomization (MR) investigated the potential causal association between beverage consumption and facial skin aging. METHODS: The single-nucleotide polymorphisms (SNPs) associated with coffee, alcohol, and tea intake were derived from the IEU project. The SSB-associated SNPs were selected from a genome-wide association study (GWAS). Data on facial skin aging were derived from the largest GWAS involving 16 677 European individuals. The inverse variance-weighted (IVW) was the main MR analysis method, supplemented by other methods (MR-Egger, weighted median, simple mode, and weighted mode). The MR-Egger intercept analysis was used for sensitivity analysis. Moreover, we conducted a replication analysis using data from another GWAS dataset on coffee consumption to validate our findings. RESULTS: Four instrumental variables (IVs) sets were used to examine the causal association between beverage consumption (coffee, alcohol, tea, SSB) and facial skin aging. Our results revealed that genetically predicted higher coffee consumption reduced the risk of facial skin aging (OR: 0.852; 95% CI: 0.753-0.964; p = 0.011, IVW method). The sensitivity analysis confirmed the robustness of the findings, with no evidence of pleiotropy or heterogeneity. The results of replicated MR analysis on coffee consumption were consistent with the initial analysis (OR = 0.997; 95% CI = 0.996-0.999; p = 0.003, IVW method). CONCLUSIONS: This study manifests that higher coffee consumption is significantly associated with a reduced risk of facial skin aging. These findings can offer novel strategies for identifying the underlying etiology of facial skin aging.


Assuntos
Café , Face , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Envelhecimento da Pele , Chá , Humanos , Envelhecimento da Pele/genética , Café/efeitos adversos , Chá/efeitos adversos , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/genética , Bebidas Adoçadas com Açúcar/efeitos adversos , Bebidas/efeitos adversos
5.
Pac Symp Biocomput ; 29: 477-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160301

RESUMO

The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.


Assuntos
Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Reprodutibilidade dos Testes , Biologia Computacional , Perfilação da Expressão Gênica , Amarelo de Eosina-(YS) , Transcriptoma
6.
PLoS One ; 18(11): e0290358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943888

RESUMO

Skin photoaging induced by ultraviolet (UV) irradiation contributes to the formation of thick and coarse wrinkles. Humans are exposed to UV light throughout their lives. Therefore, it is crucial to determine the time-sequential effects of UV on the skin. In this study, we irradiated the mouse back skin with UV light for eight weeks and observed the changes in gene expressions via microarray analysis every week. There were more downregulated genes (514) than upregulated genes (123). The downregulated genes had more functional diversity than the upregulated genes. Additionally, the number of downregulated genes did not increase in a time-dependent manner. Instead, time-dependent kinetic patterns were observed. Interestingly, each kinetic cluster harbored functionally enriched gene sets. Since collagen changes in the dermis are considered to be a major cause of photoaging, we hypothesized that other gene sets contributing to photoaging would exhibit kinetics similar to those of the collagen-regulatory genes identified in this study. Accordingly, co-expression network analysis was conducted using 11 well-known collagen-regulatory seed genes to predict genes with similar kinetics. We ranked all downregulated genes from 1 to 504 based on their expression levels, and the top 50 genes were suggested to be involved in the photoaging process. Additionally, to validate and support our identified top 50 gene lists, we demonstrated that the genes (FN1, CCDC80, PRELP, and TGFBR3) we discovered are downregulated by UV irradiation in cultured human fibroblasts, leading to decreased collagen levels, which is indicative of photoaging processes. Overall, this study demonstrated the time-sequential genetic changes in chronically UV-irradiated skin and proposed 50 genes that are involved in the mechanisms of photoaging.


Assuntos
Envelhecimento da Pele , Pele , Humanos , Animais , Camundongos , Pele/metabolismo , Envelhecimento da Pele/genética , Raios Ultravioleta/efeitos adversos , Colágeno/metabolismo , Fibroblastos/metabolismo
7.
Clin Epigenetics ; 15(1): 176, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924108

RESUMO

Facial aging is the most visible manifestation of aging. People desire to look younger than others of the same chronological age. Hence, perceived age is often used as a visible marker of aging, while biological age, often estimated by methylation markers, is used as an objective measure of age. Multiple epigenetics-based clocks have been developed for accurate estimation of general biological age and the age of specific organs, including the skin. However, it is not clear whether the epigenetic biomarkers (CpGs) used in these clocks are drivers of aging processes or consequences of aging. In this proof-of-concept study, we integrate data from GWAS on perceived facial aging and EWAS on CpGs measured in blood. By running EW Mendelian randomization, we identify hundreds of putative CpGs that are potentially causal to perceived facial aging with similar numbers of damaging markers that causally drive or accelerate facial aging and protective methylation markers that causally slow down or protect from aging. We further demonstrate that while candidate causal CpGs have little overlap with known epigenetics-based clocks, they affect genes or proteins with known functions in skin aging, such as skin pigmentation, elastin, and collagen levels. Overall, our results suggest that blood methylation markers reflect facial aging processes, and thus can be used to quantify skin aging and develop anti-aging solutions that target the root causes of aging.


Assuntos
Metilação de DNA , Envelhecimento da Pele , Humanos , Envelhecimento/genética , Epigênese Genética , Envelhecimento da Pele/genética , Face
8.
Skin Res Technol ; 29(9): e13463, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37753673

RESUMO

BACKGROUND: Photoaging is a degenerative biological process that affects the quality of life. It is caused by environmental factors including ultraviolet radiation (UVR), deep skin burns, smoking, active oxygen, chemical substances, and trauma. Among them, UVR plays a vital role in the aging process. AIM: With the continuous development of modern medicine, clinical researchers have investigated novel approaches to treat aging. In particular, mesenchymal stem cells (MSCs), non-coding RNAs are involved in various physiological processes have broad clinical application as they have the advantages of convenient samples, abundant sources, and avoidable ethical issues. METHODS: This article reviews research progress on five types of stem cell, exosomes, non-coding RNA in the context of photoaging treatment: adipose-derived stem cell, human umbilical cord MSCs, epidermal progenitor cells, keratinocyte stem cells, and hair follicle stem cells (HFSCs). It also includes stem cell related exosomes and their non-coding RNA research. RESULTS: The results have clinical guiding significance for prevention and control of the onset and development of photoaging. It is found that stem cells secrete cytokines, cell growth factors, non-coding RNA, exosomes and proteins to repair aging skin tissues and achieve skin rejuvenation. In particular, stem cell exosomes and non-coding RNA are found to have significant research potential, as they possess the benefits of their source cells without the disadvantages which include immune rejection and granuloma formation.


Assuntos
Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Qualidade de Vida , Raios Ultravioleta/efeitos adversos , Pele , RNA não Traduzido/genética
9.
Arch Dermatol Res ; 315(9): 2575-2584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37402830

RESUMO

Skin aging is a continuous and irreversible process which results in impairment of the skin role as barrier against all aggressive exogenous factors. It mainly manifests by photoaging, laxity, sagging, wrinkling, and xerosis. Carboxytherapy is considered as a safe, minimally invasive modality used for rejuvenation, restoration, and recondition of the skin. In the current study, the efficacy of carboxytherapy in the treatment of skin aging was assessed through investigation of gene expression profile for Coll I, Coll III, Coll IV, elastin, FGF, TGF-ß1, and VEGF. Our study is a 2-split clinical trial in which carboxytherapy was performed on one side of the abdomen in 15 cases with intrinsically skin aging manifestations weekly for 10 sessions, while the other side of the abdomen was left without treatment. Two weeks after the last session, skin biopsies were taken from both the treated and control sides of the abdomen in order to assess gene expression profile by qRT-PCR. The analysis of gene expression levels for all of Coll I, Coll III, Coll IV, elastin, TGF-ß1, FGF and VEGF genes showed a statistically significant difference between the interventional and control groups. The findings for all of these seven genes showed increase in the interventional group, among which Coll IV, VEGF, FGF, and elastin showed the higher mean changes. Our study confirmed the effectiveness of carboxytherapy in treating and reversing the intrinsically aging skin.Clinical Trial Registration Code and Date of Registration: ChiCTR2200055185; 2022/1/2.


Assuntos
Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Elastina , Fator de Crescimento Transformador beta1/genética , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genética , Resultado do Tratamento
10.
Exp Gerontol ; 178: 112202, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178875

RESUMO

Skin aging is a complex process involving intricate genetic and environmental factors. In this study, we performed a comprehensive analysis of the transcriptional regulatory landscape of skin aging in canines. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify aging-related gene modules. We subsequently validated the expression changes of these module genes in single-cell RNA sequencing (scRNA-seq) data of human aging skin. Notably, basal cell (BC), spinous cell (SC), mitotic cell (MC), and fibroblast (FB) were identified as the cell types with the most significant gene expression changes during aging. By integrating GENIE3 and RcisTarget, we constructed gene regulation networks (GRNs) for aging-related modules and identified core transcription factors (TFs) by intersecting significantly enriched TFs within the GRNs with hub TFs from WGCNA analysis, revealing key regulators of skin aging. Furthermore, we demonstrated the conserved role of CTCF and RAD21 in skin aging using an H2O2-stimulated cell aging model in HaCaT cells. Our findings provide new insights into the transcriptional regulatory landscape of skin aging and unveil potential targets for future intervention strategies against age-related skin disorders in both canines and humans.


Assuntos
Envelhecimento da Pele , Fatores de Transcrição , Humanos , Animais , Cães , Fatores de Transcrição/genética , Envelhecimento da Pele/genética , Peróxido de Hidrogênio , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
11.
Photodermatol Photoimmunol Photomed ; 39(5): 487-497, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37253092

RESUMO

BACKGROUND: Lysosomal cathepsin D (CTSD) can degrade internalized advanced glycation end products (AGEs) in dermal fibroblasts. CTSD expression is decreased in photoaged fibroblasts, which contributes to intracellular AGEs deposition and further plays a role in AGEs accumulation of photoaged skin. The mechanism under downregulated CTSD expression is unclear. OBJECTIVE: To explore possible mechanism of regulating CTSD expression in photoaged fibroblasts. METHODS: Dermal fibroblasts were induced into photoaging with repetitive ultraviolet A (UVA) irradiation. The competing endogenous RNA (ceRNA) networks were constructed to predict candidate circRNAs or miRNAs related with CTSD expression. AGEs-BSA degradation by fibroblasts was studied with flow cytometry, ELISA, and confocal microscopy. Effects of overexpressing circRNA-406918 via lentiviral transduction on CTSD expression, autophagy, AGE-BSA degradation were analyzed in photoaged fibroblasts. The correlation between circRNA-406918 and CTSD expression or AGEs accumulation in sun-exposed and sun-protected skin was studied. RESULTS: CTSD expression, autophagy, and AGEs-BSA degradation were significantly decreased in photoaged fibroblasts. CircRNA-406918 was identified to regulate CTSD expression, autophagy, and senescence in photoaged fibroblasts. Overexpressing circRNA-406918 potently decreased senescence and increased CTSD expression, autophagic flux, and AGEs-BSA degradation in photoaged fibroblasts. Moreover, circRNA-406918 level was positively correlated with CTSD mRNA expression and negatively associated with AGEs accumulation in photodamaged skin. Further, circRNA-406918 was predicted to mediate CTSD expression through sponging eight miRNAs. CONCLUSION: These findings suggest that circRNA-406918 regulates CTSD expression and AGEs degradation in UVA-induced photoaged fibroblasts and might exert a role in AGEs accumulation in photoaged skin.


Assuntos
MicroRNAs , Envelhecimento da Pele , Humanos , Catepsina D/genética , Catepsina D/metabolismo , Catepsina D/farmacologia , Fibroblastos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , MicroRNAs/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/farmacologia , Pele/metabolismo , Envelhecimento da Pele/genética , Raios Ultravioleta/efeitos adversos
12.
Hum Genomics ; 17(1): 23, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927485

RESUMO

BACKGROUND: Blood metabolites are important to various aspects of our health. However, currently, there is little evidence about the role of circulating metabolites in the process of skin aging. OBJECTIVES: To examine the potential effects of circulating metabolites on the process of skin aging. METHOD: In the primary analyses, we applied several MR methods to study the associations between 249 metabolites and facial skin aging risk. In the secondary analyses, we replicated the analyses with another array of datasets including 123 metabolites. MR Bayesian model averaging (MR-BMA) method was further used to prioritize the metabolites for the identification of predominant metabolites that are associated with skin aging. RESULTS: In the primary analyses, only the unsaturation degree of fatty acids was found significantly associated with skin aging with the IVW method after multiple testing (odds ratio = 1.084, 95% confidence interval = 1.049-1.120, p = 1.737 × 10-06). Additionally, 11 out of 17 unsaturation-related biomarkers showed a significant or suggestively significant causal effect [p < 0.05 and > 2 × 10-4 (0.05/249 metabolites)]. In the secondary analyses, seven metabolic biomarkers were found significantly associated with skin aging [p < 4 × 10-4 (0.05/123)], while six of them were related to the unsaturation degree. MR-BMA method validated that the unsaturation degree of fatty acids plays a dominant role in facial skin aging. CONCLUSIONS: Our study used systemic MR analyses and provided a comprehensive atlas for the associations between circulating metabolites and the risk of facial skin aging. Genetically proxied unsaturation degree of fatty acids was highlighted as a dominant factor correlated with the risk of facial skin aging.


Assuntos
Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Teorema de Bayes , Análise da Randomização Mendeliana , Envelhecimento/genética , Ácidos Graxos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
13.
Mitochondrion ; 70: 41-53, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921832

RESUMO

Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.


Assuntos
Senilidade Prematura , Neoplasias , RNA Longo não Codificante , Envelhecimento da Pele , Humanos , RNA Longo não Codificante/genética , Envelhecimento da Pele/genética , Senilidade Prematura/metabolismo , Neoplasias/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo
14.
J Invest Dermatol ; 143(9): 1700-1707.e1, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36914001

RESUMO

Fragmentation, disorganization, and depletion of the collagen-rich dermal extracellular matrix are hallmarks of aged human skin. These deleterious alterations are thought to critically mediate many of the prominent clinical attributes of aged skin, including thinning, fragility, impaired wound healing, and a propensity for carcinoma. Matrix metalloproteinase-1 (MMP1) initiates the cleavage of collagen fibrils and is significantly increased in dermal fibroblasts in aged human skin. To investigate the role of elevated MMP1 in skin aging, we generated a conditional bitransgenic mouse (type I collagen alpha chain 2; human MMP1 [Col1a2;hMMP1]) that expresses full-length, catalytically active hMMP1 in dermal fibroblasts. hMMP1 expression is activated by a tamoxifen-inducible Cre recombinase that is driven by the Col1a2 promoter and upstream enhancer. Tamoxifen induced hMMP1 expression and activity throughout the dermis Col1a2:hMMP1 mice. At 6 months of age, Col1a2;hMMP1 mice displayed loss and fragmentation of dermal collagen fibrils, which was accompanied by many of the features of aged human skin, such as contracted fibroblast morphology, reduced collagen production, increased expression of multiple endogenous MMPs, and proinflammatory mediators. Interestingly, Col1a2;hMMP1 mice displayed substantially increased susceptibility to skin papilloma development. These data demonstrate that fibroblast expression of hMMP1 is a critical mediator of dermal aging and creates a dermal microenvironment that promotes keratinocyte tumor development.


Assuntos
Papiloma , Envelhecimento da Pele , Humanos , Animais , Camundongos , Idoso , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Pele/metabolismo , Envelhecimento da Pele/genética , Fibroblastos/metabolismo , Células Cultivadas , Microambiente Tumoral
15.
Apoptosis ; 28(5-6): 912-924, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000315

RESUMO

Understanding human skin photoaging requires in-depth knowledge of the molecular and functional mechanisms. Human dermal fibroblasts (HDFs) gradually lose their ability to produce collagen and renew intercellular matrix with aging. Therefore, our study aims to reveal the mechanistic actions of a novel ceRNA network in the skin photoaging by regulating HDF activities. Photoaging-related genes were obtained in silico, followed by GO and KEGG enrichment analyses. Differentially expressed lncRNAs and miRNAs were screened from the GEO database to construct the ceRNA co-expression network. In skin photoaging samples, PVT1 and AQP3 were poorly expressed, while miR-551b-3p was highly expressed. The relationships among the lncRNA, miRNA and mRNA were explored through the ENCORI database and dual luciferase reporter assay. Mechanistically, PVT1 could sequester miR-551b-3p to upregulate the expression of AQP3, which further inactivated the ERK/p38 MAPK signaling pathway. HDFs were selected to construct an in vitro cell skin photoaging model, where the senescence, cell cycle distribution and viability of young and senescent HDFs were detected by SA-ß-gal staining, flow cytometry and CCK-8 assay. In vitro cell experiments confirmed that overexpression of PVT1 or AQP3 enhanced viability of young and senescent HDFs and inhibited HDF senescence, while miR-551b-3p upregulation counteracted the effect of PVT1. In conclusion, PVT1-driven suppression of miR-551b-3p induces AQP3 expression to inactivate the ERK/p38 MAPK signaling pathway, thereby inhibiting HDF senescence and ultimately delaying the skin photoaging.


Assuntos
MicroRNAs , RNA Longo não Codificante , Envelhecimento da Pele , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Envelhecimento da Pele/genética , Apoptose/genética , MicroRNAs/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Aquaporina 3/genética
16.
J Invest Dermatol ; 143(1): 26-36.e8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940223

RESUMO

Skin photoaging is a complicated pathological process and is mainly due to UV irradiation, especially UVB irradiation. Damage induction by UVB is a complex process, involving intricate molecular mechanisms. The formation of bulky photoproducts in the DNA globally affects transcription and splicing and results in the dysfunction of keratinocytes. In this study, we show that δ-catenin is predominantly distributed in keratinocytes of the skin epidermis and functionally accelerates cell proliferation and DNA repair. Ex vivo protein profiling reveals that δ-catenin upregulates the phosphorylation of RSK2Ser-227 by enhancing the interaction between PDK1 and RSK2 and thereby induces the nuclear accumulation of YB1 to promote proliferation and DNA repair. Moreover, δ-catenin overexpression induces in vivo keratinocyte proliferation and DNA repair in UVB-irradiated mouse skin. Notably, acidic fibroblast GF/FGFR1 is identified as one of the key upstream signalings of δ-catenin by inducing δ-catenin stabilization. The involvement of δ-catenin in keratinocyte proliferation and DNA repair may suggest δ-catenin as a target for the treatment of UVB damage.


Assuntos
Envelhecimento da Pele , Camundongos , Animais , Envelhecimento da Pele/genética , delta Catenina , Queratinócitos/metabolismo , Raios Ultravioleta/efeitos adversos , Proliferação de Células/genética , Reparo do DNA , Dano ao DNA
17.
Photodermatol Photoimmunol Photomed ; 39(3): 235-245, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35950642

RESUMO

BACKGROUND: Mesenchymal stem cells-derived exosome (MSCs-exo) was identified to reduce photoaging. The purpose of this study was to investigate the potential role of microRNA (miR)-29b-3p derived from bone marrow MSCs-exo (BMSCs-exo) in photoaging. METHODS: Exosomes were isolated from BMSCs and verified by Western blot. A photoaging cell model was constructed by UVB irradiation of human dermal fibroblasts (HDFs). Quantitative real-time PCR (RT-qPCR) was performed to detect the mRNA levels of miR-29b-3p, collagen type I and matrix metalloproteinases (MMPs). CCK-8, Transwell and flow cytometry were applicated to examine cell viability, migration and apoptosis. Commercial kits are used to measure levels of oxidative stress indicators. Finally, a dual-luciferase reporter assay was applied to validate the target of miR-29b-3p. RESULTS: Extracted exosomes were positive for HSP70 and CD9. Survival of HDFs increased in an exosome concentration-dependent manner. UVB irradiation inhibited miR-29b-3p levels compared with controls, but BMSCs-exo treatment restored miR-29b-3p levels (p < .05). Additionally, BMSCs-exo-miR-29b-3p reversed the inhibition of HDFs migration and oxidative stress by UVB irradiation, as well as the promotion of apoptosis. However, this reversal was attenuated by the suppression of miR-29b-3p (p < .05). Furthermore, BMSCs-exo-miR-29b-3p also inhibited the degradation of collagen type I and the production of MMPs in photoaging, and they were also eliminated by the reduced miR-29b-3p. Finally, MMP-2 was the target gene of miR-29b-3p. CONCLUSION: Our study presented a novel role for BMSCs-exo-miR-29b-3p in improving skin photoaging function, and these findings may provide new insights into the targeted treatment of skin photoaging.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Envelhecimento da Pele , Humanos , Colágeno Tipo I/genética , Envelhecimento da Pele/genética , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , Células-Tronco Mesenquimais/metabolismo , Fibroblastos/metabolismo
18.
Skin Res Technol ; 29(1): e13231, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437544

RESUMO

BACKGROUND: Skin characteristics show great variation from person to person and are affected by multiple factors, including genetic, environmental, and physical factors, but details of the involvement and contributions of these factors remain unclear. OBJECTIVES: We aimed to characterize genetic, environmental, and physical factors affecting 16 skin features by developing models to predict personal skin characteristics. METHODS: We analyzed the associations of skin phenotypes with genetic, environmental, and physical features in 1472 Japanese females aged 20-80 years. We focused on 16 skin characteristics, including melanin, brightness/lightness, yellowness, pigmented spots, wrinkles, resilience, moisture, barrier function, texture, and sebum amount. As genetic factors, we selected 74 single-nucleotide polymorphisms of genes related to skin color, vitamin level, hormones, circulation, extracellular matrix (ECM) components and ECM-degrading enzymes, inflammation, and antioxidants. Histories of ultraviolet (UV) exposure and smoking as environmental factors and age, height, and weight as physical factors were acquired by means of a questionnaire. RESULTS: A linear association with age was prominent for increase in the area of crow's feet, increase in number of pigmented spots, decrease in forehead sebum, and increase in VISIA wrinkle parameters. Associations were analyzed by constructing linear regression models for skin feature changes and logistic regression models to predict whether subjects show lower or higher skin measurement values in the same age groups. Multiple genetic factors, history of UV exposure and smoking, and body mass index were statistically selected for each skin characteristic. The most important association found for skin spots, such as lentigines and wrinkles, was adolescent sun exposure. CONCLUSION: Genetic, environmental, and physical factors associated with interindividual differences of the selected skin features were identified. The developed models should be useful to predict the skin characteristics of individuals and their age-related changes.


Assuntos
Transtornos da Pigmentação , Envelhecimento da Pele , Feminino , Humanos , População do Leste Asiático , Pele , Envelhecimento da Pele/genética , Pigmentação da Pele/genética , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
19.
Cells ; 11(24)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552724

RESUMO

In recent years, there has been a great deal of interest in the ectopic roles of olfactory receptors (ORs) throughout the human body. Especially, the ectopic function of OR in the skin is one of the most actively researched areas. Suberic acid, a scent compound, was hypothesized to increase collagen synthesis in the ultraviolet B (UVB)-irradiated human dermal fibroblasts (Hs68) through a specific olfactory receptor. Suberic acid ameliorated UVB-induced decreases in collagen production in Hs68 cells. Using in silico docking to predict the binding conformation and affinity of suberic acid to 15 ectopic ORs detectable in Hs68, several ORs were identified as promising candidates. The effect of suberic acid on collagen synthesis in UVB-exposed dermal fibroblasts was nullified only by a reduction in OR10A3 expression via specific siRNA. In addition, using the cells transiently expressing OR10A3, we demonstrated that suberic acid can activate OR10A3 by assessing the downstream effector cAMP response element (CRE) luciferase activity. We examined that the activation of OR10A3 by suberic acid subsequently stimulates collagen synthesis via the downstream cAMP-Akt pathway. The findings support OR10A3 as a promising target for anti-aging treatments of the skin.


Assuntos
Receptores Odorantes , Envelhecimento da Pele , Humanos , Colágeno/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/genética , Envelhecimento da Pele/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
20.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499715

RESUMO

Photoaging is not only the main cause of skin aging caused by exogenous factors, it is also related to a variety of skin diseases and even malignant tumors. Excessive and repeated exposure to ultraviolet radiation, especially UVA induces oxidative stress, DNA damage, inflammation, and collagen and elastin degeneration, ultimately leads to skin photoaging, manifested by skin redness, coarse wrinkles, and pigmentation even skin cancer. There has been a large demand of effective prevention and medications but approaches in the current management of photoaging are very limited. In the previous study, we found that a non-coding circular RNA circ_0011129 acts as a miR-6732-5p adsorption sponge to inhibit the reduction of type I collagen and the denaturation and accumulation of elastin in UVA-induced HDF cells photoaging model. However, in vivo instability and efficient delivery to the target cell of circRNA is a major challenge for its clinical application. Therefore, improving its stability and delivery efficiency are desired. In this study, we proposed a strategy of delivering circ_0011129 with small extracellular vesicles (sEVs) from human adipose-derived stem cells (hADSCs) to intervene in the photoaging process. The results showed that sEVs from hADSCs in 3D bioreactor culture (3D-sEVs) can prevent photoaging. Consequently, by overexpressing circ_0011129 in hADSCs, we successfully loaded it into 3D-sEVs (3D-circ-sEVs) and its protective effect was better. Our studies provide a novel approach to preventing skin photoaging, which has important clinical significance and application value for the development of non-coding RNA drugs to treat skin photoaging. We first screened out hADSCs-derived sEVs with excellent anti-oxidant effects. We then compared the sEVs collected from traditional 2D culture with 3D bioreactor culture. By miRNA-seq and GEO data analysis, we found that miRNAs in 3D-sEVs were enriched in cell activities related to apoptosis, cellular senescence, and inflammation. Subsequently, we prepared circ_0011129-loaded 3D-sEVs (3D-circ-sEVs) by overexpressing it in hADSCs for the treatment of photoaging in vitro. We proved that 3D-circ-sEVs can interfere with the process of cell photoaging and protect cells from UVA radiation damage, as well as in a H2O2-induced oxidative stress model.


Assuntos
Vesículas Extracelulares , Envelhecimento da Pele , Dermatopatias , Humanos , Envelhecimento da Pele/genética , Raios Ultravioleta/efeitos adversos , Peróxido de Hidrogênio , Fibroblastos/efeitos da radiação , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...